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1 Hough Transform

The Hough Transform is a method of finding parametric shapes in an image. Parametric shapes are things like straight
lines, rectangles, circles, and so on. More generally, it is a voting scheme on shape parameters. It is slightly similar to
RANSAC.

The applications include finding signs in an image (through detecting rectangles and circles), 3D reconstruction of
buildings, the eye in a face, the ball in a scene, and so on. The challenge is that the image usually contains lots of
irrelevant information (edges unrelated to the shape or due to noise), and partial occlusions.

One can differentiate the image, set a threshold, and then the remaining pixels are part of the edges. Given an
edge image, we would like to group sets of edge pixels to identify dominant lines in an image. One possibility is to
perform template matching in the edge image. Here we generate a hypothetical line “kernel”, and convolve with the
image. This requires a large set of masks to accurately localize lines, which is computationally expensive. We will
instead perform an edge image transformation where edge pixels vote for possible lines. This eventually reduces the
problem to vote thresholding.

Recall, the parameter space is a space of a,b. So each line in the image, is a point in the parameter space, since
a line is composed of y = ax + b, so the (a,b) are the coordinates of the point in parameter space. In contrast, a line
in parameter space, is a point in the image. We can transfer sides, and get

y=axr+b (1)
However, remember for a point, we know x,y so we may:
b=—-xa+y

So for a point (z,y) there are an infinite number of lines b = —za + y passing through it.

1.1 Use a voting scheme

We will apply an edge detector on the image, either through the derivative with a threshold, or using Canny’s method.
We will then prepare a table h (a,b), for a,b in a certain range. We will then loop over the image, for each pixel (z,y)
on an edge vote for all the cells (a,b) which satisfy the exation y = ax + b. This means that we increase the cell
counter h (a,b). We then choose the cell which has the maximum value (or the cells which pass a given threshold).

1.2 Example
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Figure 1: Example: Slope intercept representation



However, this representation has some issues. Vertical lines are not covered by the representation y = ax + b.
Additionally, there is no way to select the range of values for the table. There are infinite values for a,b that may be
within the image, so the table must be prepared to handle these infinite values. Additionally, we cannot quantise a, b.
They are both values in R.

1.3 A better representation
We can instead use polar representation, where:
d =z cos (0) + ysin (6)

Here, d is the distance from the origin (0,0), and @ is the angle relative to the x axis. So now, a point in the image will
be translated to a sinusoidal function in r» — 6 space. Points of intersections of these sinusoidal functions will estimate
the line equation.
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Figure 2: Hough transform with polar representation

We can note immediate improvements, this can handle the vertical lines that could not be handled, we can limit
the values to specific ranges (r is in [0,359], d is less clear, so it is unlikely to appear on an exam, but could just be
the size of the image), and we can quantise them to N.



1.4 Smoothing

Without smoothing then a point will refer to a line, but when we smooth, then the point is expanded in size, and thus
the line is expanded into a valley:
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Figure 3: Smoothing

This helps resolve the issue of noise in the image, since it removes individual pixel noise lines.

1.5 Making a decision

So now we want to find the two dominant lines in the image. The problem is that if (r,8) is the cell with the maximal
value, then (r +¢,60 + ) will also get high scores. To resolve this we only search for local maxima.

We can also add in the local gradient. If a line is the transition between 2 colours, then taking a point on this line
has the gradient that is perpendicular to the line of the transition. Therefore, when adding in the local gradient, a
point on the line will also point to a point in the Hough transform. Taking all the points of this line will, thanks to
noise, point to a very tight cluster of points in the Hough transform. This reduces the problem of infinite lines, since
we know from the tight cluster which (approximate) line we want.

1.6 Complex shapes
1.6.1 Circles

Perhaps we also want to detect circles in the image, which are not just constructed of straight lines (I mean, that
is quite literally their definition). A naive solution would be to construct a table h (a,b,r), and for each pixel (z,y)
which is an edge in the image, vote for all the cells satisfying

(@ —a)®+(y—b)* =1

However, the size of the table is O (n?’), and the voting for each pixel takes O (n2) The solution is to use the gradient
information, so you vote only for centres (a,b) in the gradient direction. We could also use a more advanced solution,
and vote with complex numbers.

With no orientation, each token (point) votes for all possible circles that pass through that point (infinite). With
orientation, then each token can vote for a smaller number of circles. Realistically, only 2, since we have limited the
size of the circle, and stated the direction of the circle at that point, so it is tangent to only 2 circles.

Consider this example for finding circles:
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Figure 5: Hough transforms for finding the penny

Here we can see that there are 2 different transforms for the different sizes, and the penny only shows up in the
image looking for circles the right size, and in the right image where we are using larger radii, the penny does not
appear, only the quarters.

2 Colour

Systems need colour. An incomplete list of reasons why includes

To tell what food is edible

To distinguish between material changes from shading changes
To group parts of one object together in a scene

Check whether a person’s appearance is normal / healthy

And so on

Newton did some experiments with prisms, where he decomposed sunlight into individual components (remarkably
rainbow like), and also where he used a second prism to recombine them into a single beam of white. The visible
electromagnetic spectrum goes from around 390nm (violet) to 770nm (red).
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Figure 6: EM spectrum

Humans have 2 types of cells in our eyes for seeing. We have rods, and cones. The rods are intensity receptors,
that are very insensitive, and can only see in black and white. Great for night vision, and there are around 125 million
of them, primarily focused in ones peripheral vision. There are also cones, which can receive colour. There are 3
types, one for each of red, green, and blue, and they are densely packed in the retina.

The 3 different types of cones have different spectral response curves. Blue is small wavelengths, green is
medium wavelengths, and red is large wavelengths. We will note that there is a lot of overlap between red and green
response curves, which can result in R/G colour blindness.
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Figure 7: Spectral response curves

Colour matching experiments show that for a typical person no more than three spectra are required to reproduce
all perceived colours. For example, RGB. Each colour may be given as

3
T = Z wiPi
i=1
So for example,
P, = 645nm (R) Py = 526nm (G)Ps; = 444nm (B) (2)

Grassman laid down some laws, for the linearity of colour matching;:

1. Colour matching is additive:

C14+Cy=(R1+ Rs) + (G1 + G2) + (B1 + Ba)

2. Scaling the colour and the primaries b the same factor preserves the match:

aC =aR +aG + aB



These statements are true as any biological law. They mean that people behave like linear systems in the colour
matching experiment.

We cannot quite represent all the colours in the world with just RGB, but we can represent enough of them that
most people cannot notice the difference. Some professional printers thus have more colours from which to choose,
sometimes even up to 9, rather than the standard 4 in a home printer, to help them have more precise colour matching.

We can say in general that

C1 ()\1) Cl ()‘N)
C: Co ()\1) Cg ()\N)
C3 ()\1) 03 (>\N)

Why do we have so many wavelengths for each colour? This is because we do not see only one wavelength per major
colour, but rather a range, so this represents that neatly.
Let the spectral signal be described by the vector

t(A1)
=
t(AN)

Then the amounts of each primary colour needed to match ¢ are Ct.

Two spectra t, and s will perceptually match if Ct = C's, where C' is the colour matching functions in a set of primaries.
This is colour metamerism. Here, despite seeing possibly very different spectra of colours, we will perceive the same
colour of light. Metameric lights are lights with different spectral power distributions, but appear identical to most
observers. Consider for example the light of a tungsten bulb, and the light of a phosphor CRT television. The light
origin is completely different, and the spectra are incredibly different, but to most people, the colour of emitted light
will be very similar.

2.1 Colour spaces

For only mixing coeflicients, the CIE (Commission Internationale d’Eclairage) defined 3 new hypothetical light
sources X, Y, and Z to replace red, green, and blue:
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Figure 8: CIE-XYZ colour space

We can translate between this and RGB through multiplying by a matrix:

R 3.240479  —1.537150 —0.498535| [X
G| = [-0.969256 1.875992  0.041556 Y (3)
B 0.055648  —0.204043 1.057311 Z
X 0.412453 0.357580 0.180423
Y | =10.212671 0.715160 0.072169 (4)
Z 0.019334 0.119193 0.950227

Not all XYZ colours have positive RGB values, but all positive RGB values have positive XYZ values. It is often
convenient to work in 2D colours space, so the 3D colour space is projected onto the z 4+ y 4+ z = 1 plane, to yield the
chromaticity diagram. This diagram is presenting the three imaginary colours, X, Y, Z. All the weights are positive,
and it represents all the visible colours (tha gamut of human vision). Colours are additive, and the weights of X, Y,
Z form the 3D CIE-XYZ space.



Figure 9: CIE chromaticity diagram

In this diagram, C is “white”, and A and V can be mixed to produce any colour along the line AB., including
white. The same holds for EF, but without white, and for IJK, which does include white.
We can draw the MacAdam ellipses on this diagram (not shown here), where the idea is that within these ellipses,
humans cannot distinguish between the colours.

2.1.1 YIQ and YUYV colour models

This is a recoding of RGV for transmission efficiency, and compatibility with greyscale televisions. Recall from the

first lecture
Y 0.299 0.587 0.114 R

I{=1059% -0275 -0.321| |G
Q 0.212 —-0.523 0.311 B

We can also consider RGB on a cube. RGB is additive, meaning we add different amounts of the 3 primaries to
get every colour, so should we represent this on a cube, then the greyscale colours will appear on the diagonal between
the black corner, and the white colour. We can thus flatten this cube onto a hexagon.

2.1.2 HSYV colour space

Here we have 3 values, the Hue, which is the colour of the pure pigment, the Saturation, which is a measure of
colourfulness, or the distance from the grey line, and value, which is a measure of brightness. Maximum saturation is
at V =1, and at V = 0, then the hue is undefined.

2.1.3 CMYK - subtractive colour model

A computer monitor additively mixes red, green, and blue to create colour, where white is the maximum of all 3
primaries. A CMYK printer instead uses light absorbing cyan, magenta, and yellow inks, and white is the colour of
the background. This is useful, since paper is not emissive.

There are lots of colour spaces.

e CIE - XYZ: Linear

e CIE - L *ax*b: Non linear
e CIE - RGB: Linear

e HSV and HSL: Nonlinear
e« CMY: Linear

« CMYK: Nonlinear

« YUV, YIQ: Linear

¢ And more...



2.2 Colour histograms

These are usually density functions R® — R. The value of the bin is the number of image pixels that have the RGB
values equal to [r;, g;, b;]. Assuming an 8 bit depth RGB image, the RGB histogram has 256% = 16, 777, 216 bins, which
means it is usually very sparse. A natural image property that contributes to the spareseness of colour histograms is
the piecewise smooth world property.

Suppose we want to find images that are similar to a query image. Comparing pixel values is extremely sensitive
to changes in the image. Comparing colour histograms is much more robust, since we are only comparing the colour
palette.

There exist some different ways of calculating the distance between two histograms:

¢ FEuclidean distance:

d2 (hvg) = ZZZ(}L(GJLC) _g(a’vbvc))2

A B C

o Intersection score

s(h,g) :ZZZmin(h(a,b,c),g(a,b,c))

A B C
o EMD - “Earth Mover’s Distance”

In the RGB space, an object with a uniform colour, and varying light reflectance forms a 3D line through the
origin.
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Figure 10: Colour lines in colour histograms

In bright image regions, the pixel values may be clipped to a maximum value. This causes a loss of details, and
colour distortion. The idea is to use the unclipped values of the line to recover clipped ones. Practically: identify a
saturation (or breaking) point, fit a 3D line to the unclipped part, and predict the clipped pixel values.

(a) Clipped image (b) Corrected image

Figure 11: Correction of a clipped colour image of a car
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