
Tutorial 9 - Neural Networks
Gidon Rosalki

2025-12-17

1 Learning
The traditional goal of learning is to learn a mapping f (x) from a domain set X to a label set Y. There are two
common settings:

• Classification: Here Y is discrete, where each y ∈ Y represents a class

• Regression: Y is continuous

X Y f (x)
Images of an animal {Cat, dog, deer, . . . } Recognise the animal in the im-

age
Sounds of speech Words in English Converts speech to text
Images of faces R2 Returns location of the mouth

in the image
Corrupted images Natural images Restores a corrupted image to

its original version

Table 1: Examples

To learn parametric functions, we have a training set which is a collection of labelled samples:

S = {(xi ∈ X , yi ∈ Y)}ni=1

The hypothesis space is a set of parametric functions:

H =
{
fθ (x) |θ ∈ RS

}
This could be:

• Linear functions where f (x) =

S∑
i=1

xi · wi, parametrised by a vector w ∈ RS

• Linear transformations f (x) = Ax, parametrised by a matrix A ∈ Rd×S

• Neural networks

Our goal is to find parameters θ such that fθ ∈ H is the “best fit” for the training set S. Not all parameters are
learned, there are also hyper-parameters that we set beforehand.

1.1 Best fit
We need to consider what it means to be a “best fit”. We need to define how good a fit is, so to do this we define a
loss function L (f, S), which measures the “error” of f with respect to S. A lower loss will mean a better fit. This has
transformed our goal to finding f∗ that minimises the loss:

f∗ = argmin
f∈H

{L (f, S)}

For example:

• 0 - 1 Loss: the percentage of examples on which f is wrong:

L0−1 (f, S) =
number of times f (xi) 6= yi

|S|

This is not particularly used, since it is not great.

1

• Mean squared error: Average distance of f (xi) from yi

LMSE (f, S) =
1

|S|
∑
i

||f (xi)− yi||2

• Cross Entropy Loss: Assume that f (x) outputs the probabilities of x belonging to each possible class. Use
the probability of choosing the correct class on all examples.

Loss = − 1

n

n∑
j=1

log (f (xj,correct))

Where f (xj,correct) is the probability assigned by the model to the correct class for xi

So as we can see, we want to minimise the loss function. If L (f, S) is a differentiable function, then we can use
Gradient Descent. The key principle here is that at each iteration i of GD, we take a step in the direction of the
steepest descent:

θi = θi−1 − η4fθi−1

The step size is the learning rate, called η, is a hyper-parameter. You need to pick a value that is not too large (will
miss the minimum), and not too small (will take forever to finish).

If |S| is large, then every GD iteration is expensive. Instead, we approximate it using a small, randomly chosen
batch B ⊂ S. This is called stochastic gradient descent. This has the loop:

1. Sample a random batch B ⊂ S

2. Compute the gradient of L (f,B) with respect to the parameters of f

3. Update parameters of f using the gradient

We perform enough steps until we have covered the entire dataset, called an epoch. We perform multiple epochs
during training. Original SGD could be difficult to use for non experts, so instead ADAM is a variant of SGD which
is easier to use in practice.

1.1.1 Generalisation and overfitting

Let us assume that we have a model that fits the training set. We do not know if it is any good, it could overfit the
data, and be terrible for unseen data as a result. In order to avoid this, we must evaluate the model on unseen data.
To do this, before training we split our available data into training, validation, and test sets. Then, when training, we
choose hyper-parameters using the validation set.

1.2 Summary
We want to fit a parametric function fθ (x) to a training set S. We measure the fitness with a loss function L (fθ, S):

• For classification we generally use cross entropy loss

• For regression we typically use mean squared error

We find the best fθ by minimising the loss. For minimisation we use SGD, or one of its variants. Models must be
evaluated on unseen data in order to avoid overfitting.

2 Neural Networks
In broad terms, a neural network is a directed acyclic graph of differentiable operations. Each node is called a layer,
defined by its type and parameters. All the parameters together are the weights of the network. The depth of the
network is the longest path from the input to the output. When learning, we fix the structure, or architecture, and only
learn the weights. A network is called feed-forward if every node has at most one input, and one output connected.

Intermediate results are Tensors. Tensors are a fancy term fora multi dimensional array A ∈ RM1×···×Mn . A is an
nD tensor with the shape being the tuple (M1, . . . ,Mn). Images are 3D tensors of the shape (channels,height,width).
For RGB, then channels = 3, and for greyscale channels = 1. The convention in PyTorch is NCHW (batch size,
channels, height, width), but some other frameworks use NHWC (Keras). The input and output of each layer are
expressed as tensors. The shape and dimension of the output depends on the type of the layer.

2.1 Common layers
2.1.1 Linear / Fully connected

The operation is f (x) = Ax + b. The input is some assumed x ∈ RN , and the output is y ∈ RM . The hyper-
parameter is M , the output dimension. It has the learned parameters of the weights matrix A ∈ RN×M , and the
bias vector b ∈ RM

2

2.1.2 Activation

The operation is to apply a point wise non-linear function σ : R → R, called the activation function, on every entry
(neuron) of the input tensor:

• ReLU: σ (z) = max {z, 0}

• Hyperbolic tangent: σ (z) = tanh (z)

• Sigmoid: σ (z) =
1

1 + exp (−z)

This takes the input of any tensor of some shape, and returns an output that is the same shape as the input. It
typically takes no hyper-parameters, but there is an exception of LeakyReLU: σ (z) = max {z, 0.01z}. There are
also typically no learned parameters, with the exception of PReLU: σ (z) = max {z, αz} where α is learned

2.1.3 Convolution

The operation is to convolve the input with a set of kernels. We will run the convolution on each of the lay-
ers independently, then combine them together. Each different kernel will give us a different output channel. It
takes the input of a 3D tensor of the shame (in_channels,height,width), and outputs a 3D tensor of the shape
(out_channels,height,width). The hyper-parameters are

1. A spatial shape of kernel k × k

2. Number of kernels M (number of output channels)

It has the following learned parameters: For 1 ≤ j ≤ M the kernel wj ∈ RC×K×K , where C is the number of input
channels.

2.1.4 Pooling

The operation is to sub-sample each input channel. There are two main types:

• Average pooling: Replace every window with its average value

• Max pooling: REplace eevery window iwth its maximum value

The input is a 3D tensor of shape (in_channels,height,width), and returns an output which is a 3D tensor of

the shape
(

in_channels, height
window height

,
width

window width

)
. It takes the hyper-parameter of the size of the pooling

window (typically 2× 2), and has no learned parameters.

3 PyTorch
There are many deep learning frameworks, like keras, tensorflow, PyTorch, and so on. We will be using PyTorch in this
course. The API is very similar to numpy. The data, and models are loaded by default to the CPU. NN computations
are very computationally expensive, and slow on the CPU, but well aimed for GPUs, so we will prefer running on
the GPU, where computations are much faster. In PyTorch, we have to explicitly move tensors and the model to the
GPU (and back to CPU). Datasets and Neural networks are written as classes.

4 Classification
To classify, we need datasets from which to learn. For example, there is MNIST, a very large dataset of handwritten
digits, each is a 28 × 28 greyscale image. There are 60,000 training images, and 10,000 test images. There is also
CIFAR10, which has 10 categories aeroplane, vehicle, bird, cat, deer, dog, frog, horse, ship, and truck. Each image is
a 32× 32 colour image, and there are 50,000 training images, and 10,000 test images.
There is also IMAGENET, which has 1,000 classes, for 256× 256 colour images, and around 1.2M of them.

Data augmentation is a technique to artificially enlarge the training set. For example, we can take images, and
add flips, rotations, crops, colour jitter, noise, and so on. In short, we apply simple transformations, while keeping
the label the same. This helps reduce overfitting, and improve generalisation.

3

4.1 CNNs
This is a convolutional neural network. CNN is a general term for neural networks that apply convolutions. They
typically use convolution layers in the early stages, and linear (fully connected) layers in the final stages.
In these networks, the receptive field is the region of the input that influences a specific neuron’s activation. So if we
convolve with a 3× 3 window each layer, then in layer 2 the receptive field is 3× 3, but in layer 3 it will be 5× 5:

Figure 1: Receptive fields

We also use something called dropout. This is another technique to avoid overfitting. Here, we randomly drop units
(e.g. neurons) during training, which prevents co adaptations. Units are trained according to a loss that is dependent
on all units (i.e. what all the units are doing). Units may change to “fix” the mistakes of other units. This builds
complex adaptations that do not generalise to unseen data. Model combination improves performance, and dropout
approximates combining many different models.
In general, this is preventing each individual unit from memorising some answer.

4.1.1 ZFNet

We will not talk about this network itself, since it is not especially interesting, but rather interesting things learned
from it. It was established that different kernels turned on and off by differing amounts for different textures / colours.

4.1.2 VGG

This was an interesting paper on Very Deep Convolutional Networks for Large Scale Image Recognition. Here they
theorised instead of using large kernels between layers, we can use lots of smaller kernels, which will together have the
same receptive field as a larger kernel. For example, 3 3 × 3 kernels have the same receptive field as a 7 × 7 kernel.
This is good since we have more non linearities (deeper), and fewer parameters:

3 ·
(
32C2

)
= 27C2 < 72C2 = 49C2

Where C is the number of input and output channels. This also means that there is no local response normalisation,
adn is a good basis for transfer learning.

4.1.3 GoogLeNet

Then Google (surprise surprise) created GoogLeNet, where they basically went “let’s go deeper”. It includes deeper
networks, with 22 layers, greater computational efficiency. They are not fully connected, and have fewer parameters,
with 5M parameters, in comparison to AlexNet which has 60M, and VGG16 which has 138M. It also uses something
called the inception module.

The inception model may be naïvely seen as:

Figure 2: Inception model, naïve version

A more complex model adds a dimension reductoin, but adding more convolutions to each of the 3 rightmost
convolutions.

4

4.1.4 ResNet

Let F (x) be a sequence of regular layers. In a residual block, we merge F (x) with the input x, and return

H (x) = F (x) + x

The addition of x to the output of the computation is called skip connection. A residual block can contain any number
of layers and any type.

It was noticed that for a 56 layer model, there was a greater loss than for a 20 layer model, on CIFAR-10 ResNet
was created to resolve this, it is composed of asequence of residual blocks, in addition to standard layers. It allows
training very deep networks with

• Vanishing gradient

• Shallow to deep architecture

For example, with 152 layers, it uses batch normalization after each convolution layer.

4.2 Other tasks
There are other computer vision tasks, such as classifying and detecting objects in an image (like fruit, dogs, people,
ties, number plates, and so on). We can also use these models to do semantic segmentation, where we identify different
parts of an image (i.e. the person riding a horse, the horse, and other horses in the field).

5

	Learning
	Best fit
	Generalisation and overfitting

	Summary

	Neural Networks
	Common layers
	Linear / Fully connected
	Activation
	Convolution
	Pooling

	PyTorch
	Classification
	CNNs
	ZFNet
	VGG
	GoogLeNet
	ResNet

	Other tasks

